Warping brains

Ogihara et al 2015The team coordinated by Naomichi Ogihara has published an analytical review on computed reconstruction of fossil crania and interpolation of their brain morphology. The article presents and discusses the applications of biomedical imaging in paleontology, including technical and algebraic details. Automated assembling of fossil fragments is approached following geometric similarity, fracture surfaces, pattern matching, smoothness, and anatomical correspondence. Skulls, endocasts, and brains are integrated mixing information from computed tomography and magnetic resonance, and spatial deformation functions are used to interpolate brain morphology in fossil species. This is a very useful paper both for the technical issues and for general perspectives in digital anatomy and computed morphometrics in paleoneurology. Additional information on this topic can be found in the paper by Gunz and colleagues on virtual reconstruction and in the review by our team on functional craniology.

Brain ontogeny

Hublin et al 2015After that recent article on endocasts, the team from the Max Planck Institute has now published one more review, this time on brain ontogeny and life history. This paper introduces issues concerning encephalization, energy budget, birth, maturation, ecology, and culture. It provides also many general perspectives on hominid paleoneurology, resuming much paleontological evidence published in the last decade. It is a good and effective recompilation of literature and concepts, integrating morphometrics, development, and evolution. It is part of a special issue dedicated to brain, birthweight and the immune system.

Precuneus and surface

Bruner et al 2015One year ago we showed that a main source of variation among adult human brains is due to the proportions of the precuneus. This seems to be a stand-alone feature, not integrated with other patent morphological changes of the brain form. The spatial pattern associated with the dilation/contraction of the precuneus is particularly similar to the parietal bulging characterizing the brain of our species in evolutionary terms. Now we have published a study of the anatomical factors associated with this shape change, namely an analysis of the whole precuneal volume (cortical surface and cortical thickness) in a sample of adult humans. The results suggest that the observed changes of precuneal shape and proportions are associated with actual changes in precuneal surface area. Therefore, it is a matter of absolute cortex volume, and not just of relative size. There are no differences in cortical thickness. The precuneal volume increases with positive allometry as brain size increases (that is, it increases more than the rest of the brain, as brains get bigger), but the individual differences – as well as the differences between hemispheres – are important. What is the cellular reason of such morphological variation? Number of neurons, connections, or other components?

Interestingly, such marked anatomical variation seems not influencing any standard psychometric variable. It can be hypothesized that traditional psychometric performances are not adequate to quantify the functions of the precuneus. This is likely most of all when taking into consideration its importance in the default mode network, which functions are not easy to capture with task-based metrics.


Neubauer 2014Simon Neubauer has recently published a review on endocasts. There is a general  and effective introduction to functional craniology and paleoneurology. Then, some debated case-studies in paleoanthropology are presented and discussed, following a welcome and sensate objective approach. Computed tools and methods are also briefly introduced. Finally, evo-devo concepts and principles are applied to current paleoneurological data, integrating life-cycles and morphogenesis. This is a very useful article for teaching, and for those who are looking for a quick updating on applications and perspectives in paleoneurology. You can find another recent review of Simon Neubauer in the book Human Paleoneurology, a chapter entitled “Human brain evolution: ontogeny and phylogeny”.

Homo erectus

Bruner et al (Quaternary International 2014)Despite most than one century of studies, the taxonomic and phylogenetic status of Homo erectus is still largely debated. There is no agreement whether or not the African and Asian specimens belong to the same species, or on the meaning of the variation within the Asian group. The relevant influence of a shared allometric component, the large geographic and chronological span, the marked individual and idiosyncratic variability and (most important) the small sample size, hamper any definitive conclusion. Because of all these actual limits, we should seriously consider if our insistence in searching fixed and stable taxonomic certainties represents a necessary and useful effort. Because of these limits, probably paleoanthropology should rely on a different approach to taxonomy, more centred on the actual information available than on hypothetical and conceptual schemes. In the meanwhile, this week we  publish a general review on Homo erectus paleoneurology. We describe the general morphology of the African and Asian Homo erectus endocasts, providing a quantitative perspective of their variation and variability by means of traditional endocranial metrics. As expected, no patent differences are evidenced among different geographic groups, being size and allometry the main source of variation. Of course, the absence of morphological differences in the endocasts does not necessarily means the absence of differences in brain organization, and it does not give information on the underlying taxonomical structure. The limits of the sample size are evident: a power analysis suggests that, beyond the issue of biological representativeness, for a simple variable like cranial capacity groups of at least 40 specimens would be necessary to deal with the statistical uncertainties! Nonetheless we can now state that, at least according to the current metric information, all the possible taxa included in the Homo erectus hypodigm share similar endocranial proportions.

Temporal sulcal pattern

Rosas et al 2014Neuroanatomical evidence suggests that we have relatively larger temporal lobes when compared with the apes’ allometric brain variation. Actually, there are also some form differences in our middle cranial fossa, housing the temporal lobes. However, the morphology of the middle endocranial fossa is influenced by many factors involved in the cranial base phylogeny and ontogeny, and we can wonder whether it strictly represents, in terms or direct linear variations, corresponding changes of the temporal lobes. The structural relationship with the underlying mandible is just one of the many non-neural influences of the middle endocranial area. Nonetheless, the middle endocranial surface can also provide information on the sulcal pattern of the temporal cortex, now further investigated by Antonio Rosas and Markus Bastir. In this case, the resulting morphology is more likely to be the direct consequence of brain morphogenesis and cortical organization, being less influenced by structural cranial constraints. That is, possible species-specific differences in the sulcal pattern can be more easily interpreted in terms of intrinsic brain factors (independently upon their functional meaning), more than in terms of extrinsic  secondary consequences of the complex spatial dynamics of the endocranial base.

Modular brain

Gomez-Robles et al (2014)One of the main achievements in anatomy and morphometrics has been the introduction of the concepts of integration and modularity. Characters (and genes) are no longer interpreted as individual and independent units, but integrated into structural and functional systems. This does not mean that everything is integrated, and we should recognize that integration and modularity are based on both continuous and discontinuous hierarchies presenting many different degrees of relationship. There may be distinct combinations, and very different situations. Analyzing the structure of covariance of the endocranial base in modern humans, I suggested that local influences can be more relevant that general and long-range factors, in shaping the endocranial districts. An admixture of effects from brain, face, posture, muscles, physiology and biomechanics, makes local factors decisive to mould the specific endocranial areas. Similar results were obtained when analyzing the covariance patterns of the midsagittal brain morphology. Now Aida Gómez-Robles and colleagues have published a decisive analysis: the whole brain in three dimensions. The integration among brain parts is modest, and largely based on spatial proximity. Local factors are crucial in moulding the brain areas, at least in terms of their morphology and position. Initially one can be deceived if expecting to find a more integrated system. But at the same time such an independent organization suggests that local form changes can be analyzed considering the local context, the morphology being less contaminated by external (long-range) effects. Interpretations are easier if only local factors must be evaluated. This is something extremely relevant when dealing with evolutionary neuroanatomy, paleoneurology, and functional craniology. And then there is an issue on evolvability: the authors suggest that such limited integration can facilitate evolutionary changes.

Enter your email address to follow this blog and receive notifications of new posts by email.

RSS Brain News

RSS Neurophilosophy

  • Remote control of brain activity with heated nanoparticles
    Researchers are developing new method of wireless deep brain stimulation. Two teams of scientists have developed new ways of stimulating neurons with nanoparticles, allowing them to activate brain cells remotely using light or magnetic fields. The new methods are quicker and far less invasive than other hi-tech methods available, so could be more suitable fo […]

RSS Anthropology

RSS Human Evolution

  • An error has occurred; the feed is probably down. Try again later.

RSS The Skull Box

  • Life histories and brain evolution
    In their last review Jean-Jacques Hublin, Simon Neubauer and Philipp Gunz address the effects of hominins’ life histories in brain evolution. Encephalization in humans involved energetic costs that were sustained through changes in social structure and metabolic adaptations, including changes in the diet quality, as explained by the Expensive Tissue Hypothes […]


This blog publishes texts and comments of the author, which can not be referred to institutions or contexts outside of the blog itself. The published material may be partly derived or reported from the Web, and therefore evaluated in the public domain. If some content violates copyright or if it is considered inappropriate, please contact me, to promptly remove it. On the other hand, please cite this source whenever using images or texts from this website.


Get every new post delivered to your Inbox.

Join 50 other followers