Posts Tagged 'sulcal patterns'

Naledi

Ralph Holloway and colleagues have just published a paleoneurological study of Homo naledi. They used seven cranial portions from at least five individuals to provide a general view of an endocast of this species. The study is comprehensive and very detailed, indeed. It turns out that, despite the very small endocranial volume (about 500 cc), the brain general organization is very similar to all the other human species. Beyond some particular features in Neanderthals and modern humans, all human (Homo) species display the same general sulcal pattern. If there were differences in their sulcal organization, these should have been pretty minor or hardly recognizable on an endocast, at least according to what we can test with the small samples generally available in paleoanthropology. So, it is not surprising that Homo naledi has a Homo brain form. But the interesting thing is the association between a human brain morphology and a small brain size, as suggested by this current study. If true, we have two main conclusions. First, our brain cortical complexity and our large brain size are two independent features. They have evolved together in many cases, but not in others. Second, our human cortical folding scheme is not simply an allometric (scaled) version of the apes’ one. Cortical folding is largely influenced by mechanical factors, most of all size-related effects, so one could think that our brain morphology, although distinct from apes, is a secondary consequence of having a big brain. The results presented in this study suggest that this is not the case. We humans have a specific cortical organization and, furthermore and additionally, a big brain too. Reasonably, both features have an influence on our cognitive capacities.

Of course, these results must be confirmed on a larger perspective. Remember that here we don’t have a “brain”, but some scattered endocranial surfaces of a few specimens. That’s not sufficient to reach detailed and reliable conclusions on the brain itself, not to say on cognition. Also, the species Homo naledi (and its chronology) is at present strictly associated with one specific site and needs further corroboration from a wider geographical scenario before supporting firm or generalized statements. Its striking feature is the very small brain size. In this sense, it is worth noting that we often use to mention “average” values, sometimes forgetting about their associated variation and variability. We modern humans have a normal cranial capacity spanning a range of more than 1000 cc. In this paper, Holloway mentions the case of Homo erectus, spanning from 550 cc to 1200 cc. Therefore, caution is still necessary when interpreting the small brain size of these individuals. Of course, the fact that this species (as the Flores hominid) could have undergone brain size reduction or small brain retention does not point against the importance of brain size and encephalization. According to the available fossil record, most human species bet on big brains. Exceptions are expected, but do not break the rule.

I want to focus on one more aspect of this article. Although the topic was definitely “sexy”, the authors avoided any speculation on cognition or phylogeny. Such attitude is so professional and definitely welcome, thank you!

Advertisements

Sulcal imprints

The fuzzy geometry of the brain surface shapes the endocranial wall, and endocasts can show traces and imprints of the cortical sulcal patterns. Individual variation is noticeable, and the precise mechanisms behind these folding schemes are not clear at all. Hence, it is not recommended to use this information in a simplistic “phrenological” fashion, as unfortunately it has been done in many evolutionary studies. At the same time, cortical morphology is the direct result of neurons growth and development, and therefore even the pretentious rejection of this information seems unwise. Many authors dismiss any result based on brain gross morphology, simply because it is “just brain form”. This is probably because they ignore the developmental processes behind that forms, and they don’t take into account that when we talk about “brain form” we are implicitly referring to those processes, and not to a crude geometrical appearance. At least, sulcal patterns are useful (and the only available macroscopic) boundaries to detect the absolute or relative extension of some cerebral districts or cortical areas. So, despite all the uncertainties, they are directly providing information on cortical proportions. Proportions means “some areas are larger and some others are smaller”. Size is not always a matter of more or less neurons, but it is however matter of more or less “something”. Whatever it is, it should be functional, and maybe even adaptive some way, associated with some specific histological factor, or with some indirect physiological consequence. This is why the issue is not trivial.

Sulcal imprints are generally more visible on smaller and younger skulls. A recent study investigates the expression of the sulcal traces in macaques. Anterior folds (frontal and temporal lobes) leave more traces than the posterior ones (parietal and occipital). There are no many differences among young ontogenetic stages but then, during aging, the expression of the traces decreases noticeably, and imprints become more blurred. Local anatomical differences in the barrier between brain and skull (meninges, vessels, etc) can have a role in this size-related differences. Nonetheless, probably it is a matter of growth. In earlier ages, the brain generates a constant pressure on the vault bones, shaping the bone surface. But in later ages, when brain growth is concluded, that intimate physical relationship is looser. During aging, the brain even undergoes a shrinkage of about 7-8%, and the contact is further lost. This study is simple and effective, a good paper to approach the topic. Between an uncritical phrenological approach and a snobbish rejection of the evidence, we should consider an intermediate approach, in which we evaluate what kind of information we can obtain from these traits. To do that, we have to investigate their phenotypic factors and their mechanical influences, their structural associations and their variability.

Subparietal morphology

Pedro-Pereira and Bruner 2016In this last years we have been studying the morphology, surface and position of the precuneus in adult humans and chimps. This week we publish a survey on its coronal anatomy: lateral extension and sulcal pattern. The aim of this article is to provide a quantitative description of its parasagittal variation in terms of morphometrics and folding schemes. The subparietal sulcus is larger on the right side, and possibly larger in males. The size of the subparietal sulcus is not associated with the sulcal scheme, which is very variable even between hemispheres of the same individual. The height of the precuneus influences the outer cortical profile, but the morphology and width of the subparietal sulcus have no apparent effect on the external brain geometry. The precuneus in general influences the upper cortical shape, with scarce or no influence on the lateral outline of the upper parietal lobules. Therefore, shape changes in this lateral areas are more likely to be associated with changes of the intraparietal fold. Correlations between inner and outer morphology are useful to evaluate whether changes in deep anatomical elements can be indirectly evidenced in paleoneurology, through the analysis of the outer (endocranial) surface.

Plasticity

Gomez-Robles et al 2015Brain evolution involves changes in size and morphology, but also changes in the capacity to be changed. Plasticity refers to the range of phenotypic variation allowed within a given genetic structure. Environment is a major factor influencing the phenotypic expression, and we humans have a special additional environmental component called “culture”. The ecological, cultural, and social niches, shape each others, with dynamics which are far from being understood. Aida Gómez-Robles and colleagues have now published a morphological analysis of human and chimp brain, taking into consideration heritability. In both species cranial capacity is highly heritable, more for humans than for chimps. Also the general dimensions of the main brain areas show in both species an apparent genetic component. The situation is different when dealing with sulcal morphology, which are still heritable for chimps but not that much for humans. This means that brain morphology in chimps has a stricter genetic program, while humans are more sensitive to non-genetic factors and individual responses. Environmental influences are supposed to be the key, mostly when considering the altricial condition and heterochronic changes associated with the human brain growth and development. In a recent review on the evolution of visuospatial integration with Atsushi Iriki we focused on the necessity to understand to what extent brain changes associated with human evolution are due to genetic, epigenetic or environmental factors. We pointed to the sensitivity of the brain to be “trained” through feedbacks between biology and culture as a crucial variable targeted by selection. This new study stresses further the possibility that selection can act on the capacity to change, more than on the change itself.

Ancestry

Fan et al 2015 (Curr Biol)The skull has represented, since ever, a crystal ball to investigate history and geography of past and present human populations. Considering the reciprocal influences between brain and braincase, we can wonder whether the brain can also provide traces of that long run. It looks like it does, according to a recent study which evidences a correlation between cortical patterns and genetic ancestry. It seems not a matter of size or surface area, but of cortical organization and sulcal geometry. If confirmed, these results are extremely interesting. Taking into account these differences among human groups, the authors of the study cast some doubts on the possibility to obtain robust information from fossil species, questioning the relationships between brain shape changes and specific volumetric variations of the brain districts. I must confess I can’t really see an antagonistic relationship between these results and the paleoneurological data. Intra-specific and inter-specific variations do not necessarily undergo the same rules and patterns. Most importantly, paleoneurological evidence is also aimed at considering specific changes of surface and volume proportions, beyond sulcal appearance. And, as recently described for the precuneus, larger size of a brain element may generally mean larger cortex of that element. Brain and braincase share a lot of morphogenetic mechanisms, but of course they are also influenced by independent factors. Their boundaries may vary according to different rules, but the intimate relationships between their respective surfaces allow at least a gross quantification of spatial organization, volumetric changes, and relative proportions among brain areas. We know that morphological changes as shown on endocasts are only a part of the story, and we know they are not always associated with neural (or even cognitive) changes. But reductionists approaches should be avoided in any fields, including genetics or neuroimaging, not only in paleoneurology. Conversely, a genetic signal on the sulcal pattern may promote further interest in brain shape variation. Last but not least, the study seems to support, rather than contradict, the information available from bones: it turns out that the conclusions of the analysis match the results of the Howells‘ craniometric studies. Good.


Enter your email address to follow this blog and receive notifications of new posts by email.

RSS Brain News

RSS Cognitive archaeology

  • Summer 2018 Courses at The Center For Cognitive Archaeology
    Courses offered for the Summer 2018 Semester (June-August) The Center for Cognitive Archaeology (CCA) provides both undergraduate and graduate students the opportunity to study the evolutionary development of cognition in humans and other primates. The CCA offers 12 different online courses, which are taught by professors from the University of Colorado, Col […]

RSS The Skull Box

  • A History of Surgery
    The Chirurgeon’s Apprentice is a popular blog on the website of medical historian Dr Lindsey Fitzharris who received her doctorate from University of Oxford in medical, technology and science history. Dr Fitzharris discusses the apt naming of the blog with the word ‘chirurgeon‘ the first historical reference to a practitioner of surgery. The website illumina […]

RSS Anthropology

RSS Human Evolution

  • An error has occurred; the feed is probably down. Try again later.

RSS Neurophilosophy

  • Researchers develop non-invasive deep brain stimulation method
    Researchers at MIT have developed a new method of electrically stimulating deep brain tissues without opening the skullSince 1997, more than 100,000 Parkinson’s Disease patients have been treated with deep brain stimulation (DBS), a surgical technique that involves the implantation of ultra-thin wire electrodes. The implanted device, sometimes referred to as […]

Disclaimer

This blog publishes texts and comments of the author, which can not be referred to institutions or contexts outside of the blog itself. The published material may be partly derived or reported from the Web, and therefore evaluated in the public domain. If some content violates copyright or if it is considered inappropriate, please contact me, to promptly remove it. On the other hand, please cite this source whenever using images or texts from this website.
Advertisements