Posts Tagged 'cortical folding'

Surfaces

beaudet-et-al-jhe2016Amélie Beaudet and colleagues have published a comprehensive and detailed paleoneurological study on South African fossil cercopithecoids. The paper supplies three main advances. First, it provides key information on primate paleoneurology, in particular on Plio-Pleistocene monkeys, belonging to the genera Theropithecus, Parapapio, and Cercopithecoides. Paleoneurology is often more focused on humans and hominoids than on monkeys, and therefore this article is particularly welcome. Furthermore, the study is based on a surface-based method, that compares the rough geometry of the object. Surface analyses can represent an additional and interesting alternative for computing endocast comparisons. There are many complex techniques currently available in shape analysis, and we should always carefully consider that their results depend upon their specific criteria and constraints. Morphometric outputs are “ordered representations” of a given sample variation according to specific numerical and logical assumptions. Consequently, methods are crucial in determining the comparative framework. Different methods, different criteria. For example, surface analysis is not constrained by anatomical correspondence, but it is only sensitive to geometrical correspondence. Hence, the approach misses the information on anatomical boundaries between different elements and areas, distributing variation all through a homogeneous and undifferentiated object.This can be an advantage when taking into consideration form alone, or a disadvantage if one want to investigate the contribution of specific anatomical components. Finally, this study presents a semi-automatic approach for sulcal detection, that is a geometry-based method for the identification of surface relieves, curvature lines, and topographical variations. This approach may seriously represent a major advance in paleoneurology. Nonetheless, it should be taken into account that we still ignore many mechanisms behind cortical folding, and that folding patterns could be the result of passive biomechanical constraints with uncertain phylogenetic or functional meaning.

Folding brains

Tallinen et al 2016An amazing article has been published in Nature Physics. Brain cortical folding is influenced by genetic and physiological factors, but there are also many hypotheses concerning the possible role of mechanical forces associated with the cerebral tissues. These hypotheses are largely based on theoretical approaches and numerical simulations, integrating geometry and biomechanics. Because of the mechanical properties of cells and tissues, growth forces can be redistributed within and among the elements of the anatomical system, channeling morphogenesis and shaping the spatial organization of the anatomical components. This month Tuomas Tallinen and colleagues provide a further mathematical model of the growing cortex, introducing constraints associated with the sulcal pattern. But, more incredibly, they provide an extremely elegant and efficient experimental evidence. After MRI imaging, they prepare a physical model of the fetal brain with two gel components. The outer thin layer (simulating the cortex) swells when in contact with a solvent, undergoing a tangential expansion. When this happens, the growing outer surface and the stable inner volume must properly interact in terms of physical forces and distribution of the surface to volume adjustments. The result is amazing, because it really mimics the human cortical folding! There is an incredible correspondence between the real and simulated folding pattern, in terms of topology and degree of convolution. No programming here except the growing schedule, just physical properties, structural interaction, and forces redistribution.

“Morphology is not only a study of material things and of the forms of material things, but has its dynamical aspect, under which we deal with the interpretation, in terms of force, of the operations of energy.”
(D’Arcy Wentworth Thompson – On Growth and Form, 1942)


Enter your email address to follow this blog and receive notifications of new posts by email.

RSS Brain News

RSS Cognitive archaeology

RSS The Skull Box

  • Stáňa
    A new PhD student in the team working on craniovascular anatomy! Stanislava Eisová was in our laboratory few years ago, publishing a paper on parietal bone and vessels in which she investigated correlations between craniovascular morphology, skull size, and bone thickness. She got a Master Degree in Anthropology of Past Populations at the University of […] […]

RSS Anthropology

RSS Human Evolution

  • An error has occurred; the feed is probably down. Try again later.

RSS Neurophilosophy

  • Researchers develop non-invasive deep brain stimulation method
    Researchers at MIT have developed a new method of electrically stimulating deep brain tissues without opening the skullSince 1997, more than 100,000 Parkinson’s Disease patients have been treated with deep brain stimulation (DBS), a surgical technique that involves the implantation of ultra-thin wire electrodes. The implanted device, sometimes referred to as […]

Disclaimer

This blog publishes texts and comments of the author, which can not be referred to institutions or contexts outside of the blog itself. The published material may be partly derived or reported from the Web, and therefore evaluated in the public domain. If some content violates copyright or if it is considered inappropriate, please contact me, to promptly remove it. On the other hand, please cite this source whenever using images or texts from this website.