Posts Tagged 'parietal lobes'

Monkeys’ parietals

Parietal lobes are specialized in primates, and particularly in humans. Nonetheless, the information on their anatomical variation is still scanty. In non-human primates, parietal cortex is investigated only in few species (generally, macaques) and mostly at the histological level. Now we have published a morphometric analysis on the parietal lobes of 11 cercopithecid genera. The study was performed on endocasts, as to broaden the conclusions to the fossil record too. Parietal differences among the main subfamilies have been described before, even in fossils, but without a detailed quantitative analysis. The main shape changes separate genera with large occipital lobes and small parietal lobes (cercopiths) from species with large parietal lobes and small occipital lobes (colobuses and baboons). Allometry is apparently not involved in this feature, and size increase is only associated with taller endocasts (probably due to cranial – not cerebral – factors). These different parietal-occipital proportions are supposed to be related to distinct cognitive organization, hypothetically influenced by diet and locomotion. It would be hence interesting to test the effect of different parieto-occipital ratios on specific behaviors and cognitive capacities. More body or more vision? Different views of the world …

Domesticated bodies

Humans are hypothesized to have undergone a process of self-domestication, associated with reduction of aggressive behavior and enhanced sociability. We have also undergone anatomical changes in our parietal cortex, which is crucial for body cognition and visuospatial integration. In a recent Opinion Paper published in Frontiers in Psychology, Ben Gleeson and I wonder whether these two factors, self-domestication and body cognition, may have reciprocal influences, or even share some evolutionary mechanisms. A first likely bridge is our heightened use of technology, which is strictly associated with our body-tool prosthetic capacity and with our special life-cycle (adolescence and creativity, longevity, post-reproductive stages, etc.). The concept of “tool” is considered, in this article, through functional and cognitive parameters. A second connection is the social system, because body cognition and the association cortex affect group size and social skills based on egocentric perspectives. Neural plasticity could represent an important organic link between these anatomical and behavioral aspects. The article is part of a volume dedicated to Self-Domestication and Human Evolution.

Parietal cortex

In November 2017 Ashley Morhardt organized a Karger Workshop at Hyattsville (USA), entitled “From fossils to function: integrative and diverse approaches to vertebrate evolutionary neuroscience“. The workshop was included in the activities of the J. B. Johnston Club, and papers are  now published in Brain Behavior and Evolution. My contribution is a review on the evolution of the parietal cortex in the human genus. Articles will be freely accessible for the next six months. Have a look!

Modern human brain shape

In a very comprehensive (and elegant!) article Simon Neubauer and colleagues have now analyzed brain shape variation along the modern human lineage. Since the description of the skull and endocast of Jebel Irhoud, it was clear that modern human brain form could have evolved after modern human origin. So, at that time (150,000-300,000 years ago) we had modern humans without modern brains. If Jebel Irhoud was Homo sapiens, then “early modern humans” lacked our characteristic globular brain shape, which is due to parietal lobe bulging and cerebellar form. Then, some later “archaic modern humans” seem to display a sort of intermediate morphology. Only recently (30,000-100,000 years ago) modern humans have evolved modern brains, at least in terms of general proportions and gross appearance. Of course, it’s difficult to say whether this transition was gradual or more abrupt. This article of the Max Planck team follows a previous one on the same specimens, and provides a very detailed analysis of many fossils that describe the evolution of our own species. Although the fossil record is not continuous because of the many chronological gaps, results suggest that a gradual change was likely. They also emphasize that a full-globularity can be found at the same time in which we find the archaeological evidence of behavioural modernity (arts, symbols, complex tools …). I remarked this same point many years ago, but the statement was not much appreciated because of the many uncertainties on the cultural “modern revolution” (more or less gradual, more or less discontinuous). Whatever the process behind, the appearance of a modern brain form (largely influenced by parietal districts associated with visuospatial functions, body cognition and visual imagery) matches the appearance of a modern behaviour (largely based on visual cognition and visuospatial managements, ranging from simulation and imaging to body-tool integration). Maybe it is but a coincidence, but nonetheless … they match.

Precuneus and primates

The precuneus displays a remarkable variability in size and shape among adult humans, and it also represents a main difference between human and chimp brain morphology, being larger in our species. It can be argued that precuneus expansion in humans is due to an allometric pattern shared among primates. In this case, a large precuneus is a by-product of a big brain and scaling rules. We have now published a brain shape analysis in non-human primates, suggesting that this seems not the case. The midsagittal brain morphology in non-human primates is probably influenced by cranial architecture more than by brain differences. And, precuneus morphology is apparently not influenced by brain size, with no major differences between monkeys and apes. Therefore, its expansion in humans is likely to be a species-specific character, and not an allometric consequence of a large brain. The exact histological factors involved in this change is still to be investigated, as well as its functional (cognitive) consequences. In general, precuneus morphology is very variable also within other primate species, suggesting a noticeable plasticity. Its areas are crucial for coordination between body and vision (visuospatial integration, visual imaging, simulation, body cognition, autonoesis, etc.), and are influenced by both genetic and environmental factors (i.e., visuospatial training and practice). Its position physically matches those brain districts supposed to have undergone an expansion in the evolution of Homo sapiens, when compared with fossil hominids.

Precuneus form and folds

bruner-et-al-aa2017One more paper on the morphology of the precuneus. This time we have analyzed a racially heterogenous sample, confirming that precuneus size is a major source of brain form variation also when a wider genetic variability is taken into account. It is a variation that is apparently independent from sex, race, or hemisphere, although males could have slightly larger proportions than females. A larger precuneus can be associated with additional folds, often in its anterior district, although this association is feeble. Geometric models suggest that the areas involved in this variations are the anterior-dorsal ones, roughly corresponding to area 7a. This area is the largest and more variable of the precuneus, and it includes the medial cortex but also the dorsal external cortex of the upper parietal lobule. It is functionally associated with the integration of somatic and visual information, and with self-centered mental imagery. These results also suggest that upper and lower areas of the precuneus should be considered separately when dealing with functional or evolutionary neuroanatomy. Our former papers on this topic concerned the shape of the precuneus, its cortical surface area, its sulcal patterns and  lateral extension, and the differences between humans and chimpanzees. Apart from the relevance in modern neuroanatomy, these same endocranial regions also display a corresponding spatial enlargement in modern human evolution.

Integrated paleoneurology

Zollikofer et al 2016Together with the recent article on modern vs Neandertal endocranial ontogeny, the team coordinated by Christoph Zollikofer has now published also a large and comprehensive study on endocranial ontogeny in humans and apes. The paper focuses on a specific question: to what extent endocranial differences are due to brain differences, and to what extent they are due to cranial constraints? Definitely, this is a key-paper in paleoneurology. They considered the integration between and within the main cranial districts to evaluate the influence on brain shape of two major cranial effects: spatial packing and facial orientation. Their analyses suggest that endocranial differences between humans and apes, as well as differences among apes, are the result of all those factors, the cerebral and the cranial ones. Therefore, the endocranial form is due to a complex admixture of specific brain differences (already present at birth) and cranial constraints. Comparisons among endocranial ontogenetic patterns of living hominoids, among adult fossil specimens, and among different neuroanatomical aspects of living species, can give different results, suggesting that the relationships between anatomical, morphological, and cytological elements is far from being understood. In my opinion, a limit of many shape analyses in general concerns the use of surface semi-landmarks to analyze brain geometry. Surface landmarks are necessary because of the lack of good anatomical references on the endocasts. Unfortunately, they can’t take into account the contribution of distinct cerebral areas, and as a consequence they consider brain morphology as a single homogeneous surface. The identification of boundaries or distinct and independent elements within this surface might seriously influence the multivariate output. I am particularly interested in the analysis of the parietal districts. When using surface landmarks the analysis of the parietal surface may give different (and sometimes contrasting) results. Hence, we may wonder whether the observed parietal variations are the result of brain differences (cortical expansion/reduction) or of geometry (bulging and flexion). Nonetheless, previous morphological studies based on cortical landmarks suggest that modern humans show an actual (absolute and relative) increase not only of the parietal “surface”, but also and specifically of the parietal “lobe”, when compared with extinct hominids or with living chimps. The localization of anatomical boundaries on endocasts may be difficult, although those results have been replicated on different samples. The identification of anatomical landmarks in living species is, in contrast, definitely more reliable. Therefore, whatever the result of a global surface analysis of the whole endocranium, we should not forget that comparisons of specific areas are suggesting a differential contribution of distinct brain components.


Enter your email address to follow this blog and receive notifications of new posts by email.

RSS Brain News

  • The brain does not follow the head
    https://www.sciencedaily.com/releases/2019/10/191015131450.htm?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+sciencedaily%2Fplants_animals%2Fevolution+%28Evolutionary+Biology+News+--+ScienceDaily%29

RSS Cognitive archaeology

  • NEANDERTAL COGNITION OFFERED ONLINE NOW AT THE CENTER FOR COGNITIVE ARCHAEOLOGY @ UCCS
    How did Neandertals experience their world? How did their cognition and culture differ from ours? Were they pragmatic? Callous or cold-hearted? Did they love, were they charitable? Were they tough? Dogmatic? Xenophobic? Join Professor Frederick L Coolidge for our online course in the Neandertal Cognition. Together, we will explore the mind of some of our … C […]

RSS The Skull Box

  • Vascular atlases
    The morphology and spatial distribution of the human head vasculature display a remarkable individual variation. Investigation of vascular organization and common locations of the vessels is crucial in medical practice. New methodological approaches using advanced imaging technologies are now supplying the first vascular maps of the human head. Bernier et al […]

RSS Anthropology

RSS Human Evolution

  • An error has occurred; the feed is probably down. Try again later.

RSS Neurophilosophy

  • Researchers develop non-invasive deep brain stimulation method
    Researchers at MIT have developed a new method of electrically stimulating deep brain tissues without opening the skullSince 1997, more than 100,000 Parkinson’s Disease patients have been treated with deep brain stimulation (DBS), a surgical technique that involves the implantation of ultra-thin wire electrodes. The implanted device, sometimes referred to as […]

Disclaimer

This blog publishes texts and comments of the author, which can not be referred to institutions or contexts outside of the blog itself. The published material may be partly derived or reported from the Web, and therefore evaluated in the public domain. If some content violates copyright or if it is considered inappropriate, please contact me, to promptly remove it. On the other hand, please cite this source whenever using images or texts from this website.