Archive for the 'Brain morphology' Category

Precuneus form and folds

bruner-et-al-aa2017One more paper on the morphology of the precuneus. This time we have analyzed a racially heterogenous sample, confirming that precuneus size is a major source of brain form variation also when a wider genetic variability is taken into account. It is a variation that is apparently independent from sex, race, or hemisphere, although males could have slightly larger proportions than females. A larger precuneus can be associated with additional folds, often in its anterior district, although this association is feeble. Geometric models suggest that the areas involved in this variations are the anterior-dorsal ones, roughly corresponding to area 7a. This area is the largest and more variable of the precuneus, and it includes the medial cortex but also the dorsal external cortex of the upper parietal lobule. It is functionally associated with the integration of somatic and visual information, and with self-centered mental imagery. These results also suggest that upper and lower areas of the precuneus should be considered separately when dealing with functional or evolutionary neuroanatomy. Our former papers on this topic concerned the shape of the precuneus, its cortical surface area, its sulcal patterns and  lateral extension, and the differences between humans and chimpanzees. Apart from the relevance in modern neuroanatomy, these same endocranial regions also display a corresponding spatial enlargement in modern human evolution.

Frontal surfaces


More surfaces. This week we have published a surface comparison of the frontal endocranial morphology in OH9, Buia, and Bodo. The methods are the same applied previously by Amélie Beaudet and colleagues. Despite the importance generally assigned to the frontal cortex in our species, paleoneurology has not managed to reveal clear and patent changes in its gross form. Endocasts can only supply information on the general external appearance of the cortical anatomy, so we should expect they cannot be used to trace many aspects  associated with evolutionary variations. Also, the bad habits to defend firm statements based on single (and often reconstructed and fragmented) individuals unpleasantly crashes against the basic scientific principle of hypothesis testing, something that needs quantification, large samples and statistics. In this paper we compare these three specimens with the general scope of discussing some issues about frontal lobe evolution and paleoneurology. When compared with a modern human endocast, the younger fossils (Buia and Bodo) display flatter dorsal-lateral areas, while the older one (OH9) show a more extensive flattening of the whole dorsal surface. They all fit within a general trend observed in humans and hominoids: the more the eyes go below the frontal cortex, the more the frontal lobe bulges. So it seems reasonable to think that the curvature of the frontal lobes is but a structural consequence of the spatial relationships between face and braincase. In paleoneurology, we should exclude structural changes (cranial constraints and secondary consequences) if we want to localize functional ones, or if we want to reveal specific adaptations and primary evolutionary variations. Surface analysis is one more tool to go in that direction.


beaudet-et-al-jhe2016Amélie Beaudet and colleagues have published a comprehensive and detailed paleoneurological study on South African fossil cercopithecoids. The paper supplies three main advances. First, it provides key information on primate paleoneurology, in particular on Plio-Pleistocene monkeys, belonging to the genera Theropithecus, Parapapio, and Cercopithecoides. Paleoneurology is often more focused on humans and hominoids than on monkeys, and therefore this article is particularly welcome. Furthermore, the study is based on a surface-based method, that compares the rough geometry of the object. Surface analyses can represent an additional and interesting alternative for computing endocast comparisons. There are many complex techniques currently available in shape analysis, and we should always carefully consider that their results depend upon their specific criteria and constraints. Morphometric outputs are “ordered representations” of a given sample variation according to specific numerical and logical assumptions. Consequently, methods are crucial in determining the comparative framework. Different methods, different criteria. For example, surface analysis is not constrained by anatomical correspondence, but it is only sensitive to geometrical correspondence. Hence, the approach misses the information on anatomical boundaries between different elements and areas, distributing variation all through a homogeneous and undifferentiated object.This can be an advantage when taking into consideration form alone, or a disadvantage if one want to investigate the contribution of specific anatomical components. Finally, this study presents a semi-automatic approach for sulcal detection, that is a geometry-based method for the identification of surface relieves, curvature lines, and topographical variations. This approach may seriously represent a major advance in paleoneurology. Nonetheless, it should be taken into account that we still ignore many mechanisms behind cortical folding, and that folding patterns could be the result of passive biomechanical constraints with uncertain phylogenetic or functional meaning.

Integrated paleoneurology

Zollikofer et al 2016Together with the recent article on modern vs Neandertal endocranial ontogeny, the team coordinated by Christoph Zollikofer has now published also a large and comprehensive study on endocranial ontogeny in humans and apes. The paper focuses on a specific question: to what extent endocranial differences are due to brain differences, and to what extent they are due to cranial constraints? Definitely, this is a key-paper in paleoneurology. They considered the integration between and within the main cranial districts to evaluate the influence on brain shape of two major cranial effects: spatial packing and facial orientation. Their analyses suggest that endocranial differences between humans and apes, as well as differences among apes, are the result of all those factors, the cerebral and the cranial ones. Therefore, the endocranial form is due to a complex admixture of specific brain differences (already present at birth) and cranial constraints. Comparisons among endocranial ontogenetic patterns of living hominoids, among adult fossil specimens, and among different neuroanatomical aspects of living species, can give different results, suggesting that the relationships between anatomical, morphological, and cytological elements is far from being understood. In my opinion, a limit of many shape analyses in general concerns the use of surface semi-landmarks to analyze brain geometry. Surface landmarks are necessary because of the lack of good anatomical references on the endocasts. Unfortunately, they can’t take into account the contribution of distinct cerebral areas, and as a consequence they consider brain morphology as a single homogeneous surface. The identification of boundaries or distinct and independent elements within this surface might seriously influence the multivariate output. I am particularly interested in the analysis of the parietal districts. When using surface landmarks the analysis of the parietal surface may give different (and sometimes contrasting) results. Hence, we may wonder whether the observed parietal variations are the result of brain differences (cortical expansion/reduction) or of geometry (bulging and flexion). Nonetheless, previous morphological studies based on cortical landmarks suggest that modern humans show an actual (absolute and relative) increase not only of the parietal “surface”, but also and specifically of the parietal “lobe”, when compared with extinct hominids or with living chimps. The localization of anatomical boundaries on endocasts may be difficult, although those results have been replicated on different samples. The identification of anatomical landmarks in living species is, in contrast, definitely more reliable. Therefore, whatever the result of a global surface analysis of the whole endocranium, we should not forget that comparisons of specific areas are suggesting a differential contribution of distinct brain components.

Ontogenetic dilemma

Ponce de Leon et al 2016

Marcia Ponce de León and colleagues have published a comprehensive shape analysis on modern human and Neandertal early ontogenetic endocranial changes, as Philipp Gunz and his team did back in 2010. Interestingly, results are different. The previous study from the Max Planck Institute concluded that only modern humans have a species-specific postnatal stage in which the braincase bulges (globularization stage). In contrast, this new analysis, coordinated by Christoph Zollikofer, suggests that after birth Neandertals and modern humans share a similar pattern of endocranial shape change. In this case, any endocranial difference between these two species must occur before birth. The discrepancy between the two studies may be due to differences in the samples (which, recognizing the good samples used in these analyses, would reveal a problematic instability of most paleoanthropological studies) or to differences in the reconstructions of the specimens (which, recognizing the good experience of both teams, would reveal a problematic instability of most paleoanthropological studies). Nonetheless, we must also take into account that both articles rely on very complex statistical and algebraic passages, and methodological biases should not be ruled out. After all, also paleontology deals with the same limits of any science: we do not work with skulls or brains, but with models made of variables and parameters. Models that work well in some cases, and do a worse job in some others, depending on the questions involved. In this new study, the fact that endocranial shape differences between Neandertals and modern humans are prenatal is used to state that there are no cognitive differences between the two species. Of course, cognition is more than shape, so the relationship between the timing of these changes (before or after birth) and the statement on cognition is not particularly straight. Inferences on cognition should be made on multiple evidence, dealing with something that goes well beyond a surface analysis.

Subparietal morphology

Pedro-Pereira and Bruner 2016In this last years we have been studying the morphology, surface and position of the precuneus in adult humans and chimps. This week we publish a survey on its coronal anatomy: lateral extension and sulcal pattern. The aim of this article is to provide a quantitative description of its parasagittal variation in terms of morphometrics and folding schemes. The subparietal sulcus is larger on the right side, and possibly larger in males. The size of the subparietal sulcus is not associated with the sulcal scheme, which is very variable even between hemispheres of the same individual. The height of the precuneus influences the outer cortical profile, but the morphology and width of the subparietal sulcus have no apparent effect on the external brain geometry. The precuneus in general influences the upper cortical shape, with scarce or no influence on the lateral outline of the upper parietal lobules. Therefore, shape changes in this lateral areas are more likely to be associated with changes of the intraparietal fold. Correlations between inner and outer morphology are useful to evaluate whether changes in deep anatomical elements can be indirectly evidenced in paleoneurology, through the analysis of the outer (endocranial) surface.

Folding brains

Tallinen et al 2016An amazing article has been published in Nature Physics. Brain cortical folding is influenced by genetic and physiological factors, but there are also many hypotheses concerning the possible role of mechanical forces associated with the cerebral tissues. These hypotheses are largely based on theoretical approaches and numerical simulations, integrating geometry and biomechanics. Because of the mechanical properties of cells and tissues, growth forces can be redistributed within and among the elements of the anatomical system, channeling morphogenesis and shaping the spatial organization of the anatomical components. This month Tuomas Tallinen and colleagues provide a further mathematical model of the growing cortex, introducing constraints associated with the sulcal pattern. But, more incredibly, they provide an extremely elegant and efficient experimental evidence. After MRI imaging, they prepare a physical model of the fetal brain with two gel components. The outer thin layer (simulating the cortex) swells when in contact with a solvent, undergoing a tangential expansion. When this happens, the growing outer surface and the stable inner volume must properly interact in terms of physical forces and distribution of the surface to volume adjustments. The result is amazing, because it really mimics the human cortical folding! There is an incredible correspondence between the real and simulated folding pattern, in terms of topology and degree of convolution. No programming here except the growing schedule, just physical properties, structural interaction, and forces redistribution.

“Morphology is not only a study of material things and of the forms of material things, but has its dynamical aspect, under which we deal with the interpretation, in terms of force, of the operations of energy.”
(D’Arcy Wentworth Thompson – On Growth and Form, 1942)

Enter your email address to follow this blog and receive notifications of new posts by email.

RSS Brain News

RSS Cognitive archaeology

    This extended abstract represents a summary introduction to a work in progress, which will culminate in a publication and exhibition at The Los Angeles County Museum of Art in 2018. It briefly outlines our discoveries and interpretations, which will be more fully presented, referenced and discussed in the forthcoming catalog. This presentation is available f […]

RSS The Skull Box

  • Brain Volume Database
    The Internet Brain Volume Database (IBVD) is an online collection of neuroimaging data funded as a part of the international initiative, the Human Brain Project. The IBVD provides access data for both individual and among-group comparisons that allow total volume comparisons with parallelization of the brain into hemispheres, specific lobes or grey matter vo […]

RSS Anthropology

RSS Human Evolution

  • An error has occurred; the feed is probably down. Try again later.

RSS Neurophilosophy

  • How to become a super memorizer – and what it does to your brain
    New research shows that we can train our brains to become memory champions To many of us, having to memorize a long list of items feels like a chore. But for others, it is more like a sport. Every year, hundreds of these ‘memory athletes’ compete with one another in the World Memory Championships, memorising hundreds of words, numbers, or other pieces of inf […]


This blog publishes texts and comments of the author, which can not be referred to institutions or contexts outside of the blog itself. The published material may be partly derived or reported from the Web, and therefore evaluated in the public domain. If some content violates copyright or if it is considered inappropriate, please contact me, to promptly remove it. On the other hand, please cite this source whenever using images or texts from this website.