Archive for the 'People' Category

At Holloway’s

Ralph Holloway is at the Columbia University (New York) since 1964. More than half century dedicated to paleoneurology, brain evolution, fossils and endocasts. Some weeks ago I was visiting his laboratory, an amazing place, full of books, experience, and history. And collections. Endocasts are everywhere, witnessing at once the evolution of the human brain and the evolution of the moulding techniques. So I took the opportunity to ask Ralph some quick comments for this blog …

Why do we still need physical casts? (but do we?)

I think for the most part, we can do very well with virtual endocasts (as long as these don’t get hacked…), although these can never provide the same haptic experience as a true cast, even if it is a good 3D print. At the moment, I am working on LES1, Homo naledi, and while I have a 3D print from scan data of the endocast surface, and good images provided by Heather Garvin, I am making an endocast from a 3D print of the cranial portion, as I need the best resolution I can get of the occipital portion in particular. Even micro-CT scanning doesn’t always provide the subtle variations on the endocast surface that are critical for correctly identifying convolutional details. The downside of course is possible damage to original specimens, and lack of sharing with colleagues at other institutions unless they visit the lab where these are made. Furthermore, the accuracy of virtual endocasts depends on the software, the researcher’s experience, expertise, and whether the algorithms used to correct for distortion, etc, are accurate.

What is the main current challenge in paleoneurology?

The major challenge is to synthesize the overall size data (ECV’s) with whatever sulcal and gyral information (e.g., lunate sulcus, fronto-orbital sulcus, Broca’s cap regions, etc) is available with morphometric analyses for each specimen with temporal and archaeological evidence, so that actual hypotheses can be generated than can be tested within (or even beyond) the paleoneurological community. This requires researchers fully cognizant of anatomical details, and both nonhuman primate and human neuroscience. Needless to say, but many more hominin and hominid endocasts need to be found and studied if paleoneurology is to become a better science.

Advices to those who begin working in this field …

Know your neuro- and cranial anatomies! Stay humble, lose your hubris, and keep in mind how rare endocasts are, and how imperfect these usually are, and how difficult, if not impossible it is to really know what the brain was like when the hominin was alive, and realize that you will probably never see an endocast that fully captures all the convolution details that were part of that once throbbing brain. A lack of hubris will be essential for good science, and don’t dismiss earlier works in paleoneurology simply because these are not modern or based on the last decade of morphometric advances. Staying up to date, or being current with the findings coming out of neuroscience will be particularly difficult.

Advertisements

Rita Levi Montalcini

Rita Levi Montalcini


Enter your email address to follow this blog and receive notifications of new posts by email.

RSS Brain News

RSS Cognitive archaeology

  • Fall 2017 CCA Course Offerings
    The Center for Cognitive Archaeology is offering three exciting classes this semester: Neurocognition of Art, Cognitive Evolution, and Neandertal Cognition. Follow the link below for detailed information. https://www.uccs.edu/~cca/

RSS The Skull Box

  • Parietal lobes and tool use
    The parietal lobe has a unique central location in the brain, and it is involved in higher cognitive functions. Investigating its functions and connectivity is essential to understand its role in uniquely human abilities. Two recent works have put emphasis on the importance of the parietal lobe for tool use. Catani and colleagues investigated the […]

RSS Anthropology

RSS Human Evolution

  • An error has occurred; the feed is probably down. Try again later.

RSS Neurophilosophy

  • Researchers develop non-invasive deep brain stimulation method
    Researchers at MIT have developed a new method of electrically stimulating deep brain tissues without opening the skullSince 1997, more than 100,000 Parkinson’s Disease patients have been treated with deep brain stimulation (DBS), a surgical technique that involves the implantation of ultra-thin wire electrodes. The implanted device, sometimes referred to as […]

Disclaimer

This blog publishes texts and comments of the author, which can not be referred to institutions or contexts outside of the blog itself. The published material may be partly derived or reported from the Web, and therefore evaluated in the public domain. If some content violates copyright or if it is considered inappropriate, please contact me, to promptly remove it. On the other hand, please cite this source whenever using images or texts from this website.