Sulcal imprints

The fuzzy geometry of the brain surface shapes the endocranial wall, and endocasts can show traces and imprints of the cortical sulcal patterns. Individual variation is noticeable, and the precise mechanisms behind these folding schemes are not clear at all. Hence, it is not recommended to use this information in a simplistic “phrenological” fashion, as unfortunately it has been done in many evolutionary studies. At the same time, cortical morphology is the direct result of neurons growth and development, and therefore even the pretentious rejection of this information seems unwise. Many authors dismiss any result based on brain gross morphology, simply because it is “just brain form”. This is probably because they ignore the developmental processes behind that forms, and they don’t take into account that when we talk about “brain form” we are implicitly referring to those processes, and not to a crude geometrical appearance. At least, sulcal patterns are useful (and the only available macroscopic) boundaries to detect the absolute or relative extension of some cerebral districts or cortical areas. So, despite all the uncertainties, they are directly providing information on cortical proportions. Proportions means “some areas are larger and some others are smaller”. Size is not always a matter of more or less neurons, but it is however matter of more or less “something”. Whatever it is, it should be functional, and maybe even adaptive some way, associated with some specific histological factor, or with some indirect physiological consequence. This is why the issue is not trivial.

Sulcal imprints are generally more visible on smaller and younger skulls. A recent study investigates the expression of the sulcal traces in macaques. Anterior folds (frontal and temporal lobes) leave more traces than the posterior ones (parietal and occipital). There are no many differences among young ontogenetic stages but then, during aging, the expression of the traces decreases noticeably, and imprints become more blurred. Local anatomical differences in the barrier between brain and skull (meninges, vessels, etc) can have a role in this size-related differences. Nonetheless, probably it is a matter of growth. In earlier ages, the brain generates a constant pressure on the vault bones, shaping the bone surface. But in later ages, when brain growth is concluded, that intimate physical relationship is looser. During aging, the brain even undergoes a shrinkage of about 7-8%, and the contact is further lost. This study is simple and effective, a good paper to approach the topic. Between an uncritical phrenological approach and a snobbish rejection of the evidence, we should consider an intermediate approach, in which we evaluate what kind of information we can obtain from these traits. To do that, we have to investigate their phenotypic factors and their mechanical influences, their structural associations and their variability.

Advertisements

0 Responses to “Sulcal imprints”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s




Enter your email address to follow this blog and receive notifications of new posts by email.

RSS Brain News

RSS Cognitive archaeology

  • NEANDERTAL COGNITION OFFERED ONLINE (ACCELERATED FORMAT) DECEMBER 2018
    The Center for Cognitive Archaeology will be offering its Neandertal Cognition class online in an accelerated format from December 10, 2018 through January 31, 2019. How may Neandertals have experienced their world? How may their cognition and culture differed from ours? Were they pragmatic? Callous or cold-hearted? Did they love, were they charitable? Were […]

RSS The Skull Box

  • Mouse Lemur Brain
    The gray mouse lemur (Microcebus murinus) is a small Madagascan primate, averaging 12 cm length and weighing between 60-120 grams. Despite the diminutive size, mouse lemurs are increasingly used in medical studies of Alzheimer’s disease and similar neurological disease processes found in humans. Mouse lemurs often live to 12 years or more in the wild, […] […]

RSS Anthropology

  • Seven Million Years of Human Evolution
    This fascinating visual presentation from the American Museum of Natural History outlines what we know about human evolution by combining …Continue reading →

RSS Human Evolution

  • An error has occurred; the feed is probably down. Try again later.

RSS Neurophilosophy

  • Researchers develop non-invasive deep brain stimulation method
    Researchers at MIT have developed a new method of electrically stimulating deep brain tissues without opening the skullSince 1997, more than 100,000 Parkinson’s Disease patients have been treated with deep brain stimulation (DBS), a surgical technique that involves the implantation of ultra-thin wire electrodes. The implanted device, sometimes referred to as […]

Disclaimer

This blog publishes texts and comments of the author, which can not be referred to institutions or contexts outside of the blog itself. The published material may be partly derived or reported from the Web, and therefore evaluated in the public domain. If some content violates copyright or if it is considered inappropriate, please contact me, to promptly remove it. On the other hand, please cite this source whenever using images or texts from this website.
Advertisements

%d bloggers like this: